
SSL/TLS Certificate Generation

Target: Lightstreamer Server v. 7.0 or greater
Last updated: 1/8/2022

Table of contents

1 INTRODUCTION...3

2 PROCEDURES...4
2.1 Creation and Installation..4
2.2 Conversion of an Existing Certificate Chain Available in a Different Format.........6
2.3 Storing multiple certificate entries in the keystore...7
2.4 Utilities...7

- 2 -

1 Introduction

In order to configure Lightstreamer Server in HTTPS/WSS mode (see the various <keystore> blocks in
the Server configuration file), an SSL/TLS certificate is required. This tutorial shows an example of the
tasks needed to create an appropriate keystore in the Java “JKS” format, using the tools provided by
the Java Development Kit.

The “JKS” format ensures the support by all versions of the Java runtime. The provided instructions,
based on the JDK’s “keytool” utility, are also valid for all JDK versions since JDK 7.

Depending on the Java runtime used to run the Server, other keystore types may be supported. This
regards in particular the PKCS12 keystore format, which is more powerful, and whose support is
guaranteed since Java 9 and on late versions of Java 8.
Several other tools are available to create and handle PKCS12 keystores; the most widespread
among them is “openssl”.

The demo keystore created through this example, named myserver.keystore, is already available in
the conf directory of Lightstreamer distribution.

- 3 -

2 Procedures

2.1 Creation and Installation

 Generate a new keystore, called myserver.keystore, where the key pair is identified by the
“LS” alias (you are free to change it). In this example the target hostname is
“push.mycompany.com”:

keytool -genkeypair -alias LS -keystore myserver.keystore -keypass
mypassword -storepass mypassword -storetype JKS -keyalg "RSA" -
keysize 2048 -validity 365 -dname "CN=push.mycompany.com, O=MYCOMPANY
INC., L=MyCity, ST=MyState, C=MyCountry" -ext
SAN=dns:push.mycompany.com

NOTE: “keypass” is the password of the key pair; “storepass” is the password of the keystore.
The two passwords must be the same 1 .

Of course you are free to change any parameters to meet your requirements in terms of
algorithms, validity, and contact details.
For instance, by leveraging the SAN (Subject Alternative Name) field, it is possible to create a
Multi-domain and/or Wildcard Certificate.

NOTE: The “keytool” command line may turn out to be limited as for support for the SAN field.
In this case, you may try other tools. For instance, you can resort to the PKCS12 keystore
format and use “openssl”, which doesn’t suffer from such limitation.

At this point, the myserver.keystore file can already be used with Lightstreamer Server for test
purpose. But since it is a self-signed keystore, it will raise a security alert in any browser. So,
for production environment it is necessary to have the certificate signed by a Certification
Authority. The following steps show how to accomplish this goal.

 Create the Certificate Signing Request (CSR) to be delivered to a Certification Authority (CA):

keytool -certreq -alias LS -keystore myserver.keystore -keypass
mypassword -storepass mypassword -ext SAN=dns:push.mycompany.com -
file myserver.req

Note the replication, in particular, of the -ext parameter.
The myserver.req file is created. It must be sent to a CA to be signed.

NOTE: Some CA may require that in the previous step (i.e. the keystore generation) you have
set the “CN” attribute to a proper personal identification key, instead of the target hostname, as
a condition for them to accept the CSR. Obviously, you have to supply the target hostname to
the CA in some other part of the interaction, as determined by the CA. The CA will take care of
providing a signed certificate with the “CN” attribute set to the correct hostname.

 When the CA sends the certificate back, it is necessary to import the certificate chain provided
by the CA (not including the final certificate) in myserver.keystore.

1 For example see https://search.thawte.com/support/ssl-digital-certificates/index?page=content&id=SO832

- 4 -

https://search.thawte.com/support/ssl-digital-certificates/index?page=content&id=SO832

In this example, the certificate provided by the CA is called push.mycompany.com.crt, which is
validated through the following certification chain: “Thawte SGC CA” and “VeriSign Class 3
Public Primary CA”.

Let the intermediate certificate in the chain be the SuperCertIntermediateCA.crt file, and the
root certificate be the VeriSign.Class3.Public.Primary.CA.cer file. Then issue:

keytool -importcert -alias int1 -keystore myserver.keystore -keypass
mypassword -storepass mypassword -file SuperCertIntermediateCA.crt

keytool -importcert -alias int2 -keystore myserver.keystore -keypass
mypassword -storepass mypassword -file
VeriSign.Class3.Public.Primary.CA.cer

Make sure that all the needed certificates were either supplied by the CA or included in the
returned .crt file (push.mycompany.com.crt). Otherwise you may need to acquire them in
another way.
To extract any certificate from a chain, open the main .crt file (push.mycompany.com.crt) in
Windows by double clicking, select an intermediate certificate under the “Certification Path”
tab, display its details, then copy it on file. An export wizard will open. Choose the binary X.509
format coded with DER and the file name (e.g. VeriSign.Class3.Public.Primary.CA.cer).
In fact, all intermediate certificates are public and should be made available by the CA also
directly.

 After importing the intermediate certificates of the chain, the final certificate can be imported
too:

keytool -importcert -alias LS -keystore myserver.keystore -keypass
mypassword -storepass mypassword -file push.mycompany.com.crt
–trustcacerts

Make sure you use the same alias you used with the “-genkeypair” command.

The myserver.keystore file is now ready to be used with Lightstreamer Server.

- 5 -

2.2 Conversion of an Existing Certificate Chain Available in a Different
Format

The “keytool” utility supports conversions from different keystore formats into the Java format
(JKS), through the “-importkeystore” command.

This enables, for instance, the reuse of existing certificate chains stored in the PKCS12 format,
in case the format is not supported by the Java installation running Lightstreamer Server.
Other format conversions might be supported by keytool as well.

 Case 1: If mycerts.p12 is a container file in PKCS12 format (the .pfx extension is also
commonly used for such files), an equivalent JKS keystore can be created through:

keytool -importkeystore -destkeystore myserver.keystore -
deststorepass mypassword -deststoretype JKS -srckeystore mycerts.p12
-srcstoretype PKCS12

The command will prompt you for the password associated to mycerts.p12.
In the above command, “mypassword” is the password to be assigned to the new keystore; it
should be the same as the password associated to mycerts.p12.

The myserver.keystore file is now ready to be used with Lightstreamer Server.

 Case 2: openssl was used to generate a key pair and the related certification request. So a
MYKEY.key in PEM format has been produced and a MYCERT.crt public key certificate has
been received back from the Certification Authority. Furthermore, the CA should have supplied
a root and one or more intermediate certificates (in PEM format).
Make sure that all the needed intermediate certificates have been received. Otherwise you
may need to acquire them in PEM format, in another way, similarly to how discussed above.

Now you could import all of them into a PKCS12 keystore through “openssl”.
The openssl command has the form:

openssl pkcs12 -export -in MYCERT.crt -inkey MYKEY.key -out
mycerts.p12 -name LS -CAfile MYCACERT.crt -caname myCAname -chain

The command will prompt you for a password to be associated to mycerts.p12.
Note that MYCACERT.crt file must be the chain of the root and all the intermediate certificates
of your CA. If you have these in different PEM files you can create the MYCACERT.crt file as:

MYCACERT.crt = <concatenation of the encoded public key certificates>

you must order the certificates such that the root certificate is the last certificate in the chain.

Now, depending on the Java installation running Lightstreamer Server, the generated
mycerts.p12 file may or may not be supported. If not supported, you can now convert the
keystore to JKS format by just falling into the previous case 1.

- 6 -

2.3 Storing multiple certificate entries in the keystore

TLS certificates can be of various types. In particular, two main options are available for the
type of keypair: RSA and ECDSA. The choice can affect the client support, as RSA is weaker
and may not be accepted by all clients, whereas ECDSA is more recent and may not be
supported by old clients.

The solution is to create both types of certificate for the same hostnames and pack them in
the same keystore. In this way, the Server will be able to supply to each client the best
certificate based on the client constraints. Note that this mechanism is only supported for
PKCS12 keystores.

This can be achieved, for instance, through the “keytool” utility. Suppose, for simplicity, that
the two certificates, after being signed separately, have been stored in two PKCS12 keystores,
named myRSA.p12 and myECDSA.p12, both with alias LS. Then a new myserver.p12 keystore
that contains both certificates can be created by issuing the following two commands:

keytool -importkeystore \
 -srckeystore myRSA.p12 -srcstoretype PKCS12 -srcalias LS \
 -destkeystore myserver.p12 -deststorepass mypassword \
 -deststoretype PKCS12 -destkeypass mypassword -destalias LS_RSA

keytool -importkeystore \
 -srckeystore myECDSA.p12 -srcstoretype PKCS12 -srcalias LS \
 -destkeystore myserver.p12 -deststorepass mypassword \
 -deststoretype PKCS12 -destkeypass mypassword -destalias LS_ECDSA

Note that the two entries should have two different aliases and the same password, also equal
to the keystore password.

2.4 Utilities

 The certificates included in a keystore can be listed with the following command:

keytool -list -keystore myserver.keystore -storepass mypassword

 Each certificate in the keystore can be extracted in a readable format with the following
command:

keytool -exportcert -alias int1 -keystore myserver.keystore -
storepass mypassword -file int1.cer

- 7 -

	1 Introduction
	2 Procedures
	2.1 Creation and Installation
	2.2 Conversion of an Existing Certificate Chain Available in a Different Format
	2.3 Storing multiple certificate entries in the keystore
	2.4 Utilities

