
From Data Push to 
WebSockets

The History of Data Push and the 
Lightstreamer Technology

Last updated: 17 Oct 2018

Alessandro Alinone



Agenda

● History of Data Push
● Lightstreamer Technology
● Lightstreamer Success Stories
● MQTT.Cool and JMS Extender



What Is Data Push?

Information is delivered on the fly as soon as it 
is generated. Web pages and mobile apps are 
updated in real time.
Many application domains are taking benefit from push technology:

● Financial Services: Online trading platforms for capital markets, live price 
dissemination, order submission, spread betting

● Gaming: Sports betting, online casinos, online multiplayer video games
● Aerospace and Defense: Web telemetry of space vehicles, satellites, and 

aircrafts, web-based management of airport operations
● Media: social TV, second screen, sports event live data
● Transportation and Logistics: live tracking, supply chain monitoring
● Alerting: Emergency mass notification systems
● And many others: Social networks, in-app notifications, online 

collaboration tools, online auctions, systems monitoring, e-learning, etc.



Many Terms Used
to Refer to Data Push

Real-Time Messaging

Push Technology

Web Streaming

WebSockets

Comet

Long Polling

Real-Time Web

Web Push

Real-Time Notifications

Internet Messaging

Data Streaming

Data Push

Last Mile Messaging

Reverse Ajax Ajax Push

and others...

In-App Messaging

In-App Notifications

Push Notifications



The Four Waves
of Data Push

● 1996-2000: Webcasting
Coarse-grained daily updates

● 2000-2012: Comet
(the term "Comet" was coined by Alex Russell in 2006, but Comet technologies existed since 2000)

Polling, long polling, streaming

● 2009 onwards: Push Notifications
Apple APNs, Google FCM (previously C2DM and GCM), Web 
Push protocol

● 2012 onwards: WebSockets
Full-duplex bidirectional streaming



Second Wave:
the Raise of Data Push

● 2000: Online financial trading systems required 
data push for real-time stock price delivery

● Requirements:
○ Fine-grained updates
○ Real-time updates (low latency)

● Very first players: Lightstreamer, Caplin, 
Pushlets, KnowNow

● Technology:
○ Front-end: HTML and/or Java applets
○ Transport techniques: Ajax polling, Comet long 

polling, and Comet streaming



An Example to Help Illustrate

A temperature and 
humidity sensor must send 
data to a Web browser 
(sensor example).

Let's see how this might 
have been done in the 
history of push technology.

Web



HTTP/1.1

Request
GET / HTTP/1.1
Host: www.facebook.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0) 
Gecko/20100101 Firefox/16.0
Accept: 
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: datr=IeCPUJWOBWaU0LrmpOTOC-YX; 
reg_fb_gate=http%3A%2F%2Fwww.facebook.com%2F; 
reg_fb_ref=http%3A%2F%2Fwww.facebook.com%2F; 
wd=1080x1281
Cache-Control: max-age=0

Response
HTTP/1.1 200 OK
Cache-Control: private, no-cache, no-store, must-revalidate
Expires: Sat, 01 Jan 2000 00:00:00 GMT
P3P: CP="Facebook does not have a P3P policy. Learn why here: 
http://fb.me/p3p"
Pragma: no-cache
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block
Set-Cookie: reg_ext_ref=deleted; expires=Thu, 01-Jan-1970 00:00:01 
GMT; path=/; domain=.facebook.com
Set-Cookie: wd=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT; 
path=/; domain=.facebook.com; httponly
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
X-FB-Debug: 
4wzuaiMEh5R1tzwT7CBNVncjMl1zLu3fmz4CvMLu+UQ=
Date: Tue, 30 Oct 2012 14:16:12 GMT
Transfer-Encoding: chunked
Connection: keep-alive

2d2e

...........}[o#Y..{..lNO..-..[...u.J...R.&.L&........j....0.'...a.afoX.^`.{...3.`.
{.....?._..L&/.....w.]...d.s.....'"...7.6N..[R...k_..?..
COMPRESSED CONTENT..........................................

Request

Response



Full Page Refresh

Typical issues:
● Low update frequency; no 

real time
● High bandwidth usage
● High load on Web server

Sensor example: for each 
refresh, the full HTML page 
with the current values is 
retrieved

wait...

wait...

wait...

Refresh 1

Browser Server

wait...

Refresh 2

User

wait...

Refresh 3

wait...



Ajax Polling

Typical issues:
● Low update frequency; no 

real time
● High bandwidth usage (but 

lower than page refresh)
● High load on Web server

Advantages:
● User interface is never 

blocked

Sensor example: for each 
poll, the current values are 
retrieved

wait...

wait...Action 1

Browser Server

Action 2

User

wait...



Comet Long Polling
(or HTTP Long Polling)

Typical issues:
● Medium update frequency; 

near real time
● Medium bandwidth usage 

(HTTP headers still present 
in each round-trip cycle)

● High load on Web server

Advantages:
● User interface is never 

blocked
● Low latency on 

low-frequency events

Action 1

Server

Action 2

User

wait...

wait...

wait...

Browser



Sensor example: for each 
poll, the new values are 
retrieved only when they 
become available. Otherwise, 
the request is kept pending 
(long poll)

Action 1

Server

Action 2

User

wait...

wait...

wait...

Browser

Comet Long Polling
(or HTTP Long Polling)



Comet Streaming
(or HTTP Streaming)

Typical issues:
● May be blocked by some 

anti-virus software 
mounted on proxy servers

Advantages:
● High update frequency; 

low latency; true real time
● Low bandwidth usage 

(very little overhead)
● Low load on the network 

infrastructure

Action 1

Server

Action 2

User Browser



Action 1

Server

Action 2

User Browser

Possible techniques:
● Iframe streaming
● XHR streaming
● Flash streaming
● Server-Sent Events (SSE)

Sensor example: the server 
keeps pushing real-time 
updates as they become 
available, whatever is the 
frequency, without 
request/response round trips 
from the client

Comet Streaming
(or HTTP Streaming)



Third Wave:
WebSockets

● Goal:
○ Full-duplex asynchronous communication between a 

web client and a web server
● Why not just plain TCP?

○ Client runs untrusted code: origin-based security 
model; ports 80/443

○ WebSockets are message oriented (onmessage, send), 
TCP is stream oriented

○ WS split messages into frames, to allow:
■ Sending messages of unknown size without buffering
■ Multiplexing more logical channels on the same connection
■ Masking (XOR with random key) frames sent from the client to 

prevent cache poisoning on flawed proxy servers



WebSockets

Typical issues:
● There might be some 

firewall or proxy still 
blocking WebSockets

Advantages:
● Same as HTTP Streaming

Action 1

Server

Action 2

User Browser

Sensor example: it's a 
unidirectional scenario (from 
server to client), so with 
WebSockets the behavior is the 
same as with HTTP Streaming.



WebSockets vs. HTTP/1.1

Myth:
WebSockets are better than HTTP for sending data from the server to 
the client (use less bandwidth, have lower latency, etc.)

Myth debunked:
When sending data from the server to the client, WebSockets and 
HTTP Streaming behave exactly the same way.

After handshake, pure payload over TCP is streamed in both cases 
(WebSocket framing and HTTP chunking have a negligible difference)



ServerBrowser

The real difference is for bidirectional scenarios:

ServerBrowser ServerBrowser

TCP connection 1 TCP connection 1 TCP connection 2

W
eb

So
ck

et

H
TT

P

1.  HTTP requires at least 2 sockets

2.  HTTP requires full round trip for each request   
     (by default there is no pipelining)

3.  HTTP gives no control over connection reuse 
     (risk of a full SSL handshake for each request)

4.  HTTP gives no control over message ordering

WebSockets vs. HTTP/1.1



What About HTTP/2 ?

HTTP/2 improves performance over HTTP/1.1:
● Pipelining of requests
● Multiplexing of requests
● Compression of headers
● HTTP/2 server push

What is HTTP/2 server push?
● It is not a notification mechanism
● It can send page resources without waiting for requests
● It does not replace WebSockets
● It is possible to combine Server-Sent Events (SSE) and 

Multiplexing to "emulate" WebSockets (with no 
particular benefits)



In-app Notifications vs.
Push Notifications

In-app Notifications (Data Streaming):
● Server sends real-time data directly to the app
● The app needs to be running to receive the data
● High throughput
● Low latency
● Guaranteed delivery

Push Notifications:
● Server sends notifications to Google/Apple servers
● Google/Apple servers send notifications to the device
● The app does not need to be running to get the data
● Low throughput
● No control over latency and actual delivery



Lightstreamer Technology



What Is Lightstreamer?

Lightstreamer is a real-time message broker 
optimized for the Internet
● Implements WebSockets and HTTP Streaming/Polling
● Implements native push notifications
● Massively scalable
● Passes through any kind of network intermediary 

(firewalls, proxies, etc.)
● Supports any client-side platform
● Integrates with any back-end infrastructure
● Automatically throttles bandwidth
● Supports custom authentication and authorization
● World class track record



Lightstreamer Architecture

Server

Data Adapter

Metadata Adapter

Web Server

Back-end 
Systems

Internet

Clients
(Browsers, 

Mobile Apps, 
IoT Devices, 

etc.)

Lightstreamer Server: stand-alone process that runs in a Java virtual machine

Lightstreamer Data Adapter: custom component based on the provided API 
(Java, .NET, Node.js, Python, and TCP sockets) that attaches to the data feed 
and injects the real-time data flow into the Server

Lightstreamer Metadata Adapter: custom component based on the provided 
API (as above) that manages authentication and authorization



Rich Set of Lightstreamer
Client APIs

● Web (compatible with any browser, including older browsers and 
mobile browsers; supports frameworks like Angular, React, Vue, 
as well as hybrid frameworks, such as PhoneGap and Electron)

● Android
● Apple (iOS, macOS, tvOS, and watchOS)
● Microsoft (.NET and Excel)
● Java SE
● Node.js (for both server-side code and React Native apps)
● Python
● Unity
● Legacy (Adobe Flash, Flex, AIR; Silverlight; Java ME; 

BlackBerry; Windows Phone)
● Generic clients based on the TLCP open protocol

(see https://lightstreamer.com/docs/client_TLCP_base/TLCP%20Specifications.pdf)

https://lightstreamer.com/docs/client_TLCP_base/TLCP%20Specifications.pdf


Logical Layers of
Lightstreamer Server

Se
cu

ri
ty

Se
cu

ri
ty

M
on

it
or

in
g

Optimized Delivery
Bandwidth and frequency control; smart throttling; 

conflation; resampling; delta delivery; batching

Multichannel Transport
Bidirectional transport layer with firewall and proxy 

traversal; StreamSense; native push notifications

Message Routing
Publish-subscribe; multiplexing; fan-out

Se
cu

ri
ty

Sc
al

ab
ili

ty



Logical Layers of
Lightstreamer Server

Se
cu

ri
ty

Se
cu

ri
ty

M
on

it
or

in
g

Optimized Delivery
Bandwidth and frequency control; smart throttling; 

conflation; resampling; delta delivery; batching

Multichannel Transport
Bidirectional transport layer with firewall and proxy 
traversal; StreamSense; mobile push notifications

Message Routing
Publish-subscribe; multiplexing; fan-out

Se
cu

ri
ty

Sc
al

ab
ili

ty



● Automatic and fast detection of the best transport on a 
per-client basis

● Upper layers are fully abstracted from the actual 
transport

Multichannel Transport: 
StreamSense

WebSockets

HTTP Streaming

HTTP Smart Polling



● Efficient and reliable bidirectional channel provided in 
all the cases (whatever is the underlying transport)

● Messages sent from the client to the server have 
in-order guaranteed delivery with automatic batching

● Lightstreamer enriches HTTP:
○ Messages are acknowledged explicitly
○ Lost messages are retransmitted automatically
○ Out-of-order messages are reordered automatically
○ Underlying socket is kept open for reuse via reverse heartbeats
○ Multiple requests are automatically batched, to highly reduce the 

number of HTTP round trips

Multichannel Transport: 
Bidirectional Channel

See live Round-Trip Demo:
https://demos.lightstreamer.com/RoundTripDemo/

https://demos.lightstreamer.com/RoundTripDemo/


● Data can be delivered to mobile clients using native 
push notifications too

● Apple APNs and Google FCM are supported
● If an app is not active, the device will receive live 

updates in any case
● No extra development on the server side: messages 

originated from the Data Adapter can use both the 
streaming channel and the push notification channel

● Trigger support: determine what messages should 
result in a push notification

Multichannel Transport:
Push Notifications



Logical Layers of
Lightstreamer Server

Se
cu

ri
ty

Se
cu

ri
ty

M
on

it
or

in
g

Optimized Delivery
Bandwidth and frequency control; smart throttling; 

conflation; resampling; delta delivery; batching

Multichannel Transport
Bidirectional transport layer with firewall and proxy 
traversal; StreamSense; mobile push notifications

Message Routing
Publish-subscribe; multiplexing; fan-out

Se
cu

ri
ty

Sc
al

ab
ili

ty



publishes

● Client subscribes to items with schemas (sets of 
fields):

● Data Adapter publishes on demand:

Message Routing: 
Publish-Subscribe

Client subscribes
Field "A"

Ite
m

 1
Field "B"
Field "C"

Field "X"

Ite
m

 2

Field "Y"

Field "A"

Ite
m

 3 Field "X"
Field "C"
Field "Y"

Data Adapterstart publish
Item 1

Item 1
snapshot

Item 1
update 1

Item 1
update 2

publishesData Adapterstart publish
Item 2

Item 2
snapshot

Item 2
update 1

Item 2
update 2



Message Routing: 
Publish-Subscribe

Clientdelivers Item 1
snapshot

Item 1
update 1

Item 2
snapshot

Item 1
update 2

Item 2
update 1

● Server sends multiplexed data to Client:

● Any routing scenario is supported (broadcast, 
multicast, unicast):

publishes
Item 1

publishes
Item 1
(once)Data Adapter

Client 1,000,000

Client 1
... Massive fan-out, 

broadcast

Data Adapter
Client 2

Client 1

publishes
Item 2

item 1

item 1

item 1

item 2

Personal messages, 
unicast



Message Routing: 
Publish-Subscribe

Data Adapter Client

Publisher Subscriber

● Asymmetric pub-sub:

○ In many scenarios the "data feed" is completely different from the 
data consumer (topology, protocol, business model)

○ Optimization for massive publishing from server-side data feeds

● Clients can still publish:

○ The Client (Subscriber API) can send messages to the Adapter to be 
processed and possibly incorporated into the data stream

Data Adapter Client

Publisher Subscriber

sendMessage



Logical Layers of
Lightstreamer Server

Se
cu

ri
ty

Se
cu

ri
ty

M
on

it
or

in
g

Optimized Delivery
Bandwidth and frequency control; smart throttling; 

conflation; resampling; delta delivery; batching

Multichannel Transport
Bidirectional transport layer with firewall and proxy 
traversal; StreamSense; mobile push notifications

Message Routing
Publish-subscribe; multiplexing; fan-out

Se
cu

ri
ty

Sc
al

ab
ili

ty



Optimized Delivery:
Filterability

● Data filterability
○ Based on the nature of the data, series of updates 

to an item can be filtered, to reduce frequency, via:
■ Queueing
■ Resampling
■ Conflation

● Lightstreamer's filtering
○ For each subscription of each client, Lightstreamer 

allows to define how data can be filtered, with 
several parameters

○ Filtering is then applied on the fly to the data 
stream based on a number of static and dynamic 
conditions



Optimized Delivery:
Throttling

● Bandwidth Control
○ For each client, a maximum bandwidth can be 

allocated to the multiplexed stream connection

● Frequency Control
○ For each subscription of each client, a maximum 

update frequency can be allocated

● Smart Throttling
○ Internet congestion is detected

Lightstreamer heuristically combines these 
three variables to dynamically throttle the data 
flow with filtering See live Bandwidth and Frequency Demo:

https://demos.lightstreamer.com/BandwidthDemo/

https://demos.lightstreamer.com/BandwidthDemo/


Optimized Delivery:
Other Mechanisms

● Batching and TCP packet optimization:
○ Data is aggregated efficiently within TCP packets
○ Configurable trade-off between latency and overhead 

reduction, overriding Nagle's algorithm

● Lightweight protocol:
○ Position-based protocol with negligible overhead (no JSON, no 

XML, no metadata redundancy)

● Delta delivery:
○ For subsequent updates to an item, only the actually changed 

fields (delta) are sent; custom selectors available

● Multiple subscription modes:
○ MERGE, COMMAND, DISTINCT, RAW

See live Market Depth Demo:
https://demos.lightstreamer.com/MarketDepthDemo/

https://demos.lightstreamer.com/MarketDepthDemo/


Logical Layers of
Lightstreamer Server

Optimized Delivery
Bandwidth and frequency control; smart throttling; 

conflation; resampling; delta delivery; batching

Multichannel Transport
Bidirectional transport layer with firewall and proxy 
traversal; StreamSense; mobile push notifications

Message Routing
Publish-subscribe; multiplexing; fan-out

Se
cu

ri
ty

Se
cu

ri
ty

M
on

it
or

in
g

Se
cu

ri
ty

Sc
al

ab
ili

ty



Scalability

● Concurrent staged event-driven architecture
○ Non-blocking I/O used for all types of connections
○ Graceful degradation of the quality of service
○ Tested on a single box with:

■ One million connections with low frequency traffic
■ Tens of thousands of connections with very high 

frequency traffic

● Vertical scalability
○ An instance of Lightstreamer Server can fully 

leverage multiple CPUs and cores available in a box

● Horizontal scalability
○ Clustering via any standard Web Load Balancer



Security

● Secure connections
○ WSS and HTTPS support based on SSL/TLS strong 

encryption and configurable cipher suites
○ Server-side and client-side certificate support

● Authentication
○ Credentials are received from the client, together 

with HTTP headers and connection properties
○ Custom Metadata Adapter validates them

● Fine-grained authorization
○ Every subscription and QoS request done by the 

clients is authorized through the Metadata Adapter



● Monitoring Dashboard

● Logging
○ Fine-grained configurable logging, with several 

categories, levels, and appenders

● JMX
○ Extensive metrics exposed via a JMX interface, to 

hook into application management facilities

Monitoring



Metadata Adapter Model:
Authentication



Data Adapter Model:
Data Push



Lightstreamer Success 
Stories



Some Lightstreamer Customers



Way More Customers...

300+ companies using Lightstreamer 
from 6 continents.

Thousands of servers installed.

Millions of end users served.



Lightstreamer Named a
"Cool Vendor" by Gartner

Gartner, "Cool Vendors in Application 
and Integration Platforms, 2012", by 
Massimo Pezzini and Jess Thompson, 
11 April 2012.

Cool Vendor Report 2012 cites Weswit (former name of Lightstreamer 
company), with its Lightstreamer product, as innovative, impactful and 
intriguing in the area of Application and Integration Platforms.
"Web streaming is an emerging form of MOM aimed at enabling back-end applications to send real-time 
messages over the public Internet, typically to large numbers (up to millions) of mobile or stationary 
endpoints, according to a publish-and-subscribe model". When analyzing 'Who should care' the report goes 
on to explain: "ISVs, SIs and cloud service providers that require efficient, low-latency and scalable 
publish-and-subscribe data distribution to mobile and Web-based endpoints should look at Web-streaming 
technologies as a way to add value to their offerings by enabling reliable and relatively easy-to implement 
connectivity."

Disclaimer: Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with 
the highest ratings. Gartner research publications consist of the opinions of Gartner's research organization and should not be construed as statements of fact. Gartner disclaims 
all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.



Outstanding Customer Satisfaction

As Lightstreamer is pivotal in our overall offering, the Lightstreamer support team 
was a key factor in our success. For its reputation in the financial industry, 
choosing Lightstreamer was a no-brainer for us.

Israel Kalush, VP Engineering, eToro

Lightstreamer has been a very stable and hassle-free piece of infrastructure that 
also has made our client programming life easier. We have operated a mission 
critical streaming system for nearly 3 years with a minimum of operational 
trouble.

Oddmar Sandvik, DNB

Our experience of Lightstreamer support has been very positive, they have set a 
high bar for other vendors to strive to achieve. They are very proactive in helping 
to resolve issues.

 Ivan Gowan, Head of IT Development, IG



NASA: International Space Station 
Live www.isslive.com

http://www.isslive.com


Morgan Stanley: Matrix
www.morganstanley.com/matrixinfo

http://www.morganstanley.com/matrixinfo


IG: Spread Betting and CFDs
www.ig.com

http://www.ig.com


bwin.party: Sports Betting and 
Online Gaming www.gvc-plc.com

http://www.gvc-plc.com


"X Factor" TV Show: Remote 
Clapping and Voting xfactor.sky.it

http://xfactor.sky.it


MQTT.Cool and
JMS Extender



Other Products Based on the 
Lightstreamer Engine

Lightstreamer is used as the core for two specialized 
products:
● MQTT.Cool
● JMS Extender

These are gateways that extend two messaging protocols 
(MQTT and JMS) over the web

Any legacy JMS solution or any new IoT/MQTT platform 
can easily get browser-based clients



MQTT.Cool

Native 
MQTT 
Clients

MQTT 
Broker

Internet

Clients
(Browsers, 

Hybrid Apps, 
Node.js Apps)

MQTT.Cool extends any third-party MQTT broker with new out-of-the-box 
features. Any web page running inside a web browser will instantly become an 
MQTT client, ready to send and receive real-time MQTT messages through 
firewalls and proxies.

● On the client side, a Paho-like API is provided as part of the JavaScript 
client library

● On the server side, a Java hook API is provided to implement custom 
authentication and authorization



MQTT.Cool Improves
Any MQTT Broker

Security
● Authenticate users with total flexibility
● Add fine-grained authorization
● Offload TLS/SSL encryption
● Increase security by avoiding direct access to the broker

Architecture
● Connect to any MQTT broker from anywhere on the Internet
● Develop web clients with friendly Eclipse Paho-like API
● Access multiple MQTT brokers with a single connection

Performance
● Scale up any MQTT broker with massive fan-out
● Always receive fresh data with adaptive throttling and conflation
● Get full control over bandwidth and event frequency



JMS Extender

JMS 
Producers 

and 
Consumers

Third-party
JMS Server

Clients
(Browsers, 

Hybrid Apps, 
Node.js Apps)

Lightstreamer JMS Extender leverages the Lightstreamer technology to extend 
any third-party JMS server by:

● Extending the JMS connections from the LAN into the web
● Extending the JMS API from Java to JavaScript
● Extending the JMS server scalability 
● Extending the JMS security model

Web pages can exchange messages with legacy JMS applications through the 
Internet with no security issues

JMS Extender

Internet



Benefits of JMS Extender

● Connect to any JMS server from the Internet
Even from behind the strictest corporate firewalls

● Use the JMS API in your JavaScript code
Full JMS API in any web browser, as well as any Node.js application

● Massively scale out your existing JMS Server
Offload connection fan-out to the JMS Extender

● Add fine-grained authentication and authorization
The Hook API enables to implement custom security rules

● Connect to multiple JMS servers
A single JMS Extender can connect to different JMS servers

● Support for advanced JMS features
Multiple acknowledge modes, once-and-only-once message delivery, etc.



Follow Lightstreamer

Website: lightstreamer.com

Blog: blog.lightstreamer.com

Forums: forums.lightstreamer.com

Newsletter: eepurl.com/dv10w1

 
@Lightstreamer

 github.com/Lightstreamer

 facebook.com/Lightstreamer

 linkedin.com/groups/2218807

https://lightstreamer.com
https://blog.lightstreamer.com/
https://forums.lightstreamer.com/
https://eepurl.com/dv10w1
https://twitter.com/Lightstreamer
https://github.com/Lightstreamer
https://www.facebook.com/Lightstreamer
https://www.linkedin.com/groups/2218807

